Go has great DataFrame libraries that let you easily manipulate data that’s stored in CSV files and databases.
Working with CSV files directly can be burdensome. DataFrames are easier because they provide data manipulation and grouping functionality natively.
There are three popular Go libraries:
- gota: started in January 2016
- qframe: started November 2016
- dataframe-go: started in October 2018
This blog post shows you how to perform basic operations with each library so we can see which API is the cleanest.
Why are DataFrames important for Go
Go is a great language for ETL.
Developers coming from other languages / frameworks love using DataFrames.
Web development is the biggest Go domain, but there is still a nice chunk of developers that use Go for data science.
Initial impressions
- qframe has the most elegant API and performs faster than gota in all benchmarks. We need to add dataframe-go benchmarks.
- no native support the Parquet file format yet
- no support for Arrow yet
None of the libraries have stable APIs yet. Let’s help add key features and move these libraries towards 1.0 releases!
qframes
Suppose you have a data/example.csv
file with the following contents:
first_name,favorite_number matthew,23 daniel,8 allison,42 david,18
Let’s open the CSV file and read it into a DataFrame:
csvfile, err := os.Open("data/example.csv") if err != nil { log.Fatal(err) } f := qframe.ReadCSV(csvfile)
We can view the data with fmt.Println
.
fmt.Println(f) first_name(s) favorite_number(i) ------------- ------------------ matthew 23 daniel 8 allison 42 david 18
The (s)
next to first_name
means it’s a string column. The (i)
next to favorite_number
means it’s an integer column.
qframe intelligently infers the schema (it doesn’t blindly assume all columns are strings).
Let’s add an is_even
column to the DataFrame that contains true
if favorite_number
is even.
f = f.Apply( qframe.Instruction{ Fn: isEven, DstCol: "is_even", SrcCol1: "favorite_number"})
Let’s check that is_even
has been added:
fmt.Println(f) first_name(s) favorite_number(i) is_even(b) ------------- ------------------ ---------- matthew 23 false daniel 8 true allison 42 true david 18 true
Filter out all the rows that do not have is_even
set to true
.
newF := f.Filter(qframe.Filter{Column: "is_even", Comparator: "=", Arg: true})
Let’s take a look at the filtered DataFrame:
fmt.Println(newF) first_name(s) favorite_number(i) is_even(b) ------------- ------------------ ---------- daniel 8 true allison 42 true david 18 true
Let’s write out this result to a CSV file:
file, err := os.Create("tmp/qframe_main_ouput.csv") if err != nil { log.Fatal(err) } newF.ToCSV(file)
The tmp/qframe_main_ouput.csv
file will look like this:
first_name,favorite_number,is_even daniel,8,true allison,42,true david,18,true
qframe is easy to work with and has a great public interface.
rocketlaunchr dataframe-go
Let’s use the same dataset and run the same operations with dataframe-go.
Read the CSV into a DataFrame.
ctx := context.TODO() csvfile, err := os.Open("data/example.csv") if err != nil { log.Fatal(err) } df, err := imports.LoadFromCSV(ctx, csvfile, imports.CSVLoadOptions{ DictateDataType: map[string]interface{}{ "first_name": "", // specify this column as string "favorite_number": int64(0), // specify this column as int64 }})
View the contents of the df
:
fmt.Print(df.Table()) +-----+------------+-----------------+ | | FIRST NAME | FAVORITE NUMBER | +-----+------------+-----------------+ | 0: | matthew | 23 | | 1: | daniel | 8 | | 2: | allison | 42 | | 3: | david | 18 | +-----+------------+-----------------+ | 4X2 | STRING | INT64 | +-----+------------+-----------------+
The Print
output is a little confusing because the column names are actually first_name
and favorite_number
.
Points to note when reading CSVs with dataframe-go:
- Schema inference is not supported, so we need to use
DictateDataType
to specify thatfavorite_number
is anint64
column - We need to create a context to use the
LoadFromCSV
method
Let’s multiply the favorite_number
column by two:
s := df.Series[1] applyFn := dataframe.ApplySeriesFn(func(val interface{}, row, nRows int) interface{} { return 2 * val.(int64) }) dataframe.Apply(ctx, s, applyFn, dataframe.FilterOptions{InPlace: true})
Let’s view the contents of df
:
fmt.Print(df.Table()) +-----+------------+-----------------+ | | FIRST NAME | FAVORITE NUMBER | +-----+------------+-----------------+ | 0: | matthew | 46 | | 1: | daniel | 16 | | 2: | allison | 84 | | 3: | david | 36 | +-----+------------+-----------------+ | 4X2 | STRING | INT64 | +-----+------------+-----------------+
Some notes on this code:
df.Series[1]
depends on thefavorite_number
column being the second column in the DataFrame. If the columns are reordered, the code will error out or double another column.- The empty interface is used in a couple of spots
I couldn’t figure out filtering easily.
Here’s the filtering example in the README:
filterFn := dataframe.FilterDataFrameFn(func(vals map[interface{}]interface{}, row, nRows int) (dataframe.FilterAction, error) { if vals["title"] == nil { return dataframe.DROP, nil } return dataframe.KEEP, nil }) seniors, _ := dataframe.Filter(ctx, df, filterFn)
We were able to filter a qframe DataFrame with only a single line of code: f.Filter(qframe.Filter{Column: "is_even", Comparator: "=", Arg: true})
. dataframe-go is more verbose.
The dataframe-go maintainers are great to work with. Hopefully we can add dataframe-go to qbench, so we can compare the gota, qframe, and dataframe-go performance side-by-side.
gota
Let’s load the data/example.csv
file into a gota DataFrame:
csvfile, err := os.Open("data/example.csv") if err != nil { log.Fatal(err) } df := dataframe.ReadCSV(csvfile)
We can view the DataFrame contents with Println
:
fmt.Println("df: ", df) first_name favorite_number 0: matthew 23 1: daniel 8 2: allison 42 3: david 18 <string> <int>
gota has smartly inferred that favorite_number
is an integer column.
Add an is_even
column to the DataFrame if favorite_number
is even:
isEven := func(s series.Series) series.Series { num, _ := s.Int() isFavoriteNumberEven := num[0]%2 == 0 return series.Bools(isFavoriteNumberEven) } isEvenSeries := df.Select("favorite_number").Rapply(isEven) isEvenSeries.SetNames("is_even") df = df.CBind(isEvenSeries)
Email me if you know how to make this code better!
df
now has an is_even
column:
fmt.Println("df with is even: ", df) df with is even: [4x3] DataFrame first_name favorite_number is_even 0: matthew 23 false 1: daniel 8 true 2: allison 42 true 3: david 18 true <string> <int> <bool>
Let’s filter the DataFrame so it only contains people with a favorite_number
that’s even (i.e. only include the rows where the is_even
column is true
).
df = df.Filter(dataframe.F{"is_even", "==", true}) fmt.Println("df filtered: ", df)
Here’s the output:
df filtered: [3x3] DataFrame first_name favorite_number is_even 0: daniel 8 true 1: allison 42 true 2: david 18 true <string> <int> <bool>
Now let’s write our filtered DataFrame to disk. Here’s the code that’ll write this data to your local filesystem:
f, err := os.Create("tmp/gota_example_output.csv") if err != nil { log.Fatal(err) } df.WriteCSV(f)
Open the tmp/gota_example_output.csv
file in your text editor and inspect the contents:
first_name,favorite_number,is_even daniel,8,true allison,42,true david,18,true
Spark / Scala syntax
Spark provides an elegant API for working with DataFrames. Let’s look at the Spark code to perform these operations.
Read the data into a Spark DataFrame
val df = spark.read.option("header", "true").csv(path)
Pretty print the DataFrame and the DataFrame schema:
df.show() +----------+---------------+ |first_name|favorite_number| +----------+---------------+ | matthew| 23| | daniel| 8| | allison| 42| | david| 18| +----------+---------------+ df.printSchema() root |-- first_name: string (nullable = true) |-- favorite_number: string (nullable = true)
Add the is_even
column to the DataFrame and print the output:
val df2 = df.withColumn("is_even", $"favorite_number" % 2 === 0) df2.show() +----------+---------------+-------+ |first_name|favorite_number|is_even| +----------+---------------+-------+ | matthew| 23| false| | daniel| 8| true| | allison| 42| true| | david| 18| true| +----------+---------------+-------+
Filter out all the values where is_even
is false
:
val filteredDF = df2.where($"is_even" === true) filteredDF.show() +----------+---------------+-------+ |first_name|favorite_number|is_even| +----------+---------------+-------+ | daniel| 8| true| | allison| 42| true| | david| 18| true| +----------+---------------+-------+
Write the data to disk:
filteredDF.repartition(1).write.csv(outputPath)
Spark is optimized to write multiple files in parallel. We’ve used repartition(1)
to write out a single file, but this is bad practice for bigger datasets.
Here’s how Spark will write the data in this example:
some_spark_example/ _SUCCESS part-00000-43fad235-8734-4270-9fed-bf0d3b3eda77-c000.csv
Check out Writing Beautiful Apache Spark Code if you’d like to quickly learn how to use Apache Spark.
Next steps
A lot of people want to use DataFrames in Go – the existing repos have a lot of stars.
Go is a great language for ETL and a robust DataFrame library will make it even better!
Suggested next steps:
- Study the Spark DataFrame API and see if we can make a Go DataFrame API that’s equally elegant (qframe is close!)
- Add native Parquet support
- Add Parquet column pruning for a big speed bump
- Integrate Apache Arrow
- Make 1.0 release
Permalink
Hey
Great post
Can you show the function isEven contents?
I am trying to do an apply like a pandas apply, on each row of the dataframe, but I am a bit stuck
f = f.Apply(
qframe.Instruction{
Fn: isEven,
DstCol: “is_even”,
SrcCol1: “favorite_number”})
Permalink
I am impressed by Golang, but it’s not quite ready for production use for data. I found this article looking for a way to append a row in either gota or dataframe-go (have not tried qframe yet).
In gota, the only doc on gota is a PR (issue 69) that points to df.RBind which requires constructing a new dataframe then appending to the existing. Unfortunately, there’s no clean way that I could find to do this. Unfortunately, the packages hasn’t been updated in months so it may be an orphan. Much credit to the developer for tackling this, but it needs upstream attention to get traction.
dataframe-go has similar issues. I can append easily enough, but getting the data out to Excel or CSV is not yet stable. Again, kudos to the developer for an excellent initial package, but it’s not yet viable for data. It is being actively developed but export functionality is currently broken.